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Role of surface roughness characterized by fractal geometry on laminar flow in microchannels
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A three-dimensional model of laminar flow in microchannels is numerically analyzed incorporating surface
roughness effects as characterized by fractal geometry. The Weierstrass-Mandelbrot function is proposed to
characterize the multiscale self-affine roughness. The effects of Reynolds number, relative roughness, and
fractal dimension on laminar flow are all investigated and discussed. The results indicate that unlike flow in
smooth microchannels, the Poiseuille number in rough microchannels increases linearly with the Reynolds
number, Re, and is larger than what is typically observed in smooth channels. For these situations, the flow
over surfaces with high relative roughness induces recirculation and flow separation, which play an important
role in single-phase pressure drop. More specifically, surfaces with the larger fractal dimensions yield more
frequent variations in the surface profile, which result in a significantly larger incremental pressure loss, even
though at the same relative roughness. The accuracy of the predicted Poiseuille number as calculated by the

present model is verified using experimental data available in the literature.
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I. INTRODUCTION

In classical fluid mechanics, the wall roughness is typi-
cally considered negligible for laminar flow. However, with
decreasing channel size and increasing relative roughness, as
applied in MEMS devices, the wall roughness increases in
importance. An important question whether or not there is
effect of roughness on laminar internal flow has been asked
repeatedly in more recent studies [1].

In spite of a large number of studies of fluid flow and heat
transfer characteristics in microchannels, considerable great
differences still exist between the available experimental
data [2-7]. While some of these variations may be the result
of measurement error, differences in the channel surface con-
ditions, especially differences in the channel roughness [1],
may be the dominant reason. When considering mini/
microchannels (10 um=d,=3 mm) [8], the ratio between
the geometry of the roughness profile and the hydraulic di-
ameter becomes significantly different from what typically
occurs in more conventional channels. At this scale, the
shape, spacing, and size of the roughness irregularities have
a very different influence upon the pressure drop and the
overall fluid flow characteristics. For this reason, the role of
surface roughness on the liquid flow in microchannels has
become increasingly important and of considerable interest
in the past several years.

Pfund er al. [9] measured the friction factors in rough
rectangular microchannels with depths ranging from
128 um to 521 wm. The results of this investigation indi-
cated significant differences between the experimental results
observed and classical theory. Hu et al. [10] developed a
three-dimensional finite volume based numerical model to
simulate pressure driven liquid flow in microchannels with
rectangular prism rough elements on the surface. In this in-
vestigation, the effects of surface roughness in terms of the
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rough elements’ height, size, spacing, and the channel height
on both the velocity distribution and pressure drop were ex-
amined and found to be significant. Croce and Agaro [11,12]
investigated the roughness effect on the heat transfer and
pressure loss in microscale channels through a finite element
CFD code. The surface roughness was explicitly modeled
through a set of random generated peaks along an ideal
smooth surface.

Kleinstreuer and Koo [13] proposed a computational
model to consider the effects of wall roughness on liquid
flow in microchannels. The roughness layer was modeled as
a porous medium near the wall. This model has been found
to be of particular utility at very low Reynolds numbers, with
very high relative roughness. Bahrami et al. [14] developed
an analytical model to predict the pressure drop of fully de-
veloped, laminar, incompressible flow in rough microtubes,
in which the roughness was assumed to be subjected to
GAUSSIAN distribution. Taylor et al. [15] laid out the histori-
cal and current understanding of the effects of surface rough-
ness and texture on fluid flow, and explored several potential
methods for improving the understanding of and controlling
the effect of surface roughness and texture.

To investigate the mechanisms of flow in rough micro-
channels, it is necessary to quantify the relative roughness.
One way in which this can be accomplished is through a set
of roughness descriptors suitable for microchannels and min-
ichannels. This would provide a mechanism by which the
effects of different aspects of the surface topography upon
the pressure drop and fluid flow behavior can be quantified
[15,16]. There have been several previous attempts to utilize
this approach, including the use of randomly generated peaks
[12], porous media [13], and GAUSSIAN distributions [14] to
describe the surface roughness (see Fig. 1). However, the
rough surface topography is a nonstationary random process
and the scan values of roughness by instruments with differ-
ent resolutions and scan lengths can be very different for the
same surface [17]. The above three approaches are still con-
structed on statistical mean and difficult to absolutely char-
acterize the exact nature of such multiscale and random
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(b)

porous media layer

FIG. 1. Construct of microchannel surface roughness available
in the literature: (a) roughness modeled through random peaks [12],
(b) roughness modeled as porous medium [13], (c) roughness sub-
jected to GAUSSIAN distribution [14].

rough surface. As a result, a proper scale-invariant character-
ization of the rough surface topography must be developed.

In this paper, inspired by the successful utilization of frac-
tal geometry in exploring the role of roughness on friction
and wear of sliding solid surfaces [18-22], the fractal geom-
etry is introduced to characterize the microchannel surface
profile and to determine its impact on laminar flow in rough
microchannels. A three-dimensional model of laminar fluid
flow in microchannel with fractal rough surfaces is devel-
oped and analyzed numerically. The effects of Reynolds
number, relative roughness, and self-affine fractal dimension
on the laminar flow are all investigated and discussed. In
addition, the accuracy of the Poiseuille number as deter-
mined by the present model is verified using experimental
data available in the literature.

II. FRACTAL CHARACTERIZATION OF ROUGH
SURFACES

Fractal geometry was founded by Mandelbrot [23-25] to
describe disordered objects using fractal dimensions. Differ-
ing from Euclidean geometry, fractal geometry suggests that
the dimensions of the disordered and irregular objects such
as a natural coastlines [23], fractal trees [26,27], porous me-
dia [28], and rough surfaces [22] can all be noninteger re-
lated.

It is well documented that, as shown in Fig. 2, when a
surface is magnified appropriately, the magnified image
looks very similar to the original profile, i.e., the roughness
at all magnifications appear quite qualitatively similar in
structure [18]. These rough surface profiles nearly always
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FIG. 2. Qualitative description of statistical self-affinity for a
surface profile.

follow power laws and hence create a self-affine property. By
using a more general class of fractals, the so-called self-
affine fractals, characterization of surface roughness from the
nanometer to the millimeter scale has been demonstrated
[18,22]. The profile of a surface, R(y), can be assumed to be
continuous down to an infinitesimal of length scale by ne-
glecting the discrete atomic arrangement. The continuity,
self-affinity and nondifferentiability of the surface profile are
preserved by a fractal characterization, in which R(y) is rep-
resented by the Weierstrass-Mandelbrot (W-M) function
[22],

cos(2my'y)

Ry =GPV @-Dn >

n=n

1<D<2; y>1

(1)

where, G is a scaling constant, D is the self-affine fractal
dimension, G and D are independent of the resolution of the
scan instruments and scale, y is the scaling parameter for
determining the spectral density and self property. In the
roughness investigation, y=1.5 is shown to be a suitable
value [22]. The parameter, n;, is used to specify the low
cut-off frequency in the W-M function. This parameter is
numerically related to the sample length, L, by y''=1/L,.

The Weierstrass-Mandelbrot function, R(y), is a multi-
scale function, composed of a superposition of infinite fre-
quency modes. The power spectrum of this multiscale func-
tion can be described as

GZ(D—I) 1

M= Iy o @

The structure function, Str(7)

Str(7) =([R(y + ) = R »

= fw s(w)(eiwr_ 1)dw= lpGZ(D—l)7_(4—2D) (3)

where, ( ) implies temporal average, # is a constant,

_I'2D- 3)sin[ (2D - 3) /2]
- 21n Y(2-D)

(4)

The root-mean-square (rms) roughness height
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where, 7 is the scale, the low cut-off frequency, w,, is pro-
vided by the sample length as w;=1/L;, and the high-
frequency limit, w,, is related with the resolution of scan
instrument, L,, as w,=1/L,.

The fractal nature of a real surface profile can be verified
either by finding its power spectrum and then comparing it
with Eq. (2) or by calculating its structure function to see if
it satisfies the relationship given in Eq. (3) [29]. In the cur-
rent study, the self-affine fractal dimension is calculated by
structure function.

By plotting Str(7) as a function of the scale 7on a log-log
plot, the relationship between the log Str(7) and the log 7 can
be observed to determine if it satisfies the proportional rela-
tionship as Str(7) ~ 7*=2P)_If this proportional relationship is
satisfied, the roughness is a self-affine fractal object and the
self-affine dimension D=(4-k)/2, in which k is the slope of
the structure function.

Once a sample of real surface topography is given, the
self-affine fractal dimension, D, can be determined by the
above method, and the scaling constant, G, can be obtained
by introducing the rms value scanned by profilometer into
Eq. (5). Therefore, once D, which implies the irregularity of
surface roughness, and o, which describes the statistical
mean height of roughness are determined, a more realistic
characterization of rough surface based on Eq. (1) can be
specified.

In order to give a clearer understanding of self-affine
roughness, the surface profiles for different self-affine fractal
dimensions, but the same rms roughness heights as con-
structed on the self-affine law by the Weierstrass-Mandelbrot
function, Eq. (1), are plotted in Fig. 3. As shown, although
the rms roughness heights are the same for these profiles, the
distributions of roughness are clearly different. The rough-
ness profile with the larger self-affine fractal dimension,
yields more frequent variations along the profile. This is ap-
parent in the figure, where the self-affine fractal dimension,
D, can directly exhibit the irregularity of the surface profile.
In this comparison, it is also implied that D and o are inde-
pendent parameters.

Channel surfaces (see Fig. 4) suggested by Pfund et al. [9]
are examined in this investigation. The self-affine fractal di-
mensions for these channel surfaces are plotted in Fig. 5. The
nearly straight line of the structure function on a log-log plot
suggests that the power-law behavior of Eq. (3) is satisfied.
Thus, these channel surfaces are self-affine fractal object and
the roughness can be realistically characterized by Eq. (1).

III. LAMINAR FLOW IN ROUGH MICROCHANNELS
A. Mathematical model

In order to analyze the influence of surface roughness on
laminar flow in microchannel, the laminar flow in rectangu-
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FIG. 3. Simulated fractal surface profile (6=2 um).

lar microchannels with large width/span ratios as shown in
Fig. 6 is investigated as an example. In order to simplify the
calculation, only the rough profile on top and bottom sur-
faces along the y direction is considered, and the two sides is
selected as smooth surface. The W-M function, R(y), is ap-
plied to characterize the rough surface, and the different
rough profile can be acquired by adjusting parameters D and
G in Eq. (1).

(a)
1.37u
T -
E SR ' Peak =
8 Valley '%D 0
' i
|- 035," > -0.98u 0.0 0.1 0.2 0.3
’ distance, mm
(b)
1.39u £ 1
=
= Peak _ET 0
| valley %O
o 8 T -1
1y Gou 0.0 0.1 0.2 0.3
> distance, mm
()
e 10
18 :
[ Q
S =.10
Yy = 0 500 1000

distance, pm

FIG. 4. (Color online) Profilometer images of channel surfaces
[9]: (a) top plate, (b) smoother polyimide bottom plate, (c) rough
polyimide bottom plate.
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FIG. 5. Plot of Str(7) ~ 7 of surface roughness for polyimide
channel: (a) top plate, (b) smoother polyimide bottom plate, (c)
rough polyimide bottom plate.

The following assumptions are applied to the model:

(1) steady laminar flow;

(2) constant fluid properties;

(3) negligible gravity.

While initially there was some question, it has been pre-
viously confirmed that the Navier-Stokes equations are still
valid for laminar flow in microchannels [6,7]. Thus, the mo-
mentum and continuity equations for laminar flow in rough
microchannels still can be presented as

p(V-VV)==VP+ uVv (6)
V.-V=0 (7)

where, P is the fluid pressure, p is the fluid density, u is the
fluid viscosity, and V is the velocity of the fluid.
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FIG. 6. Schematic of microchannel with rough surface.

The boundary condition of the fluid velocity at the chan-
nel inlet is

y=0: u=0, v=v;, w=0 (8)

where, v;, is the given fluid velocity at the channel inlet, u, v,
and w are the components of the velocity vector along the x,
v, and z directions, respectively. By considering of the fully
developed flow at the channel outlet, the outlet boundary
condition can be written as

du du aw

y=L: —=0, —=0, —=0. 9)

ay dy dy
Applying a no-slip boundary condition, the velocity on the
wall is

z=H-R'(y)
z=R(y)
x=0

x=W

<u
I
(@)

(10)

In general, the laminar internal flow is characterized by
Poiseuille number (friction constant), which is

L
f()Re(y)dy (11)

Po=fRe=
! L-L, L,

where, f is the friction factor, L, is the entrance length, and
L,/H is approximately 0.053 Re for internal laminar flow
[30]. In the current study, ¢ is defined as the ratio of the rms
roughness height, o, to the hydraulic diameter of the micro-
channel, d;, e=0/d,

B. Numerical method

The numerical solution of Egs. (6) and (7) for the velocity
and pressure fields in rough microchannels is obtained by
means of the control volume finite-difference technique and
the SIMPLE algorithm [31]. For the complex rough surface
evaluated and shown in Fig. 6, a structured mesh based on
hexahedron grid elements is applied to arrive at a solution. A
nonuniform grid arrangement along the y direction with a
large number of grid points near the channel inlet is used to
resolve the flow developing region and the nonuniform gird
in cross section is also arranged to resolve fluid flow with
consideration of the effect of the boundary layer flow. The
resulting system of algebraic equations is solved using the
Gauss-Seidal iterative technique, with successive over-
relaxation to improve the convergence time.

The numerical code is verified in a number of ways to
ensure the validity of the numerical analysis. A grid indepen-
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TABLE 1. Data for the flow in polyimide microchannels

Channel No. 1
Size of cross-sections®

(H=521 pm,W=1 cm) (H=263 pum,W=1 cm)

Channel No. 2 Channel No. 3

(H=257 pum,W=1 cm)

D (top)° 1.55

D (bottom)” 1.525

o (top) /um ¢ 0.44

o (bottom) /um © 0.20

Numerical’ 24.1

Po Classical® 22.4
Experimental® 242+1.3

1.55 1.55
1.525 1.33
0.44 0.44
0.20 2.16
249 27.0
232 232
26.1x23 29*24

“Data is obtained from Reference [9].
®Values are determined from Fig. 5.
“Values are determined from Fig. 4.

4Values are calculated with the mean value of Re in laminar experiment [9], i.e., Re is 1300, 1000, and 1100

for channel numbers 1, 2 and 3, respectively.

dence test is conducted using several different mesh sizes.
This test proved that the results based on the final grid sys-
tem presented in this paper are independent of the mesh size.
In addition, the solution is regarded as convergent not only
by examining residual levels of velocity below 107, but also
by monitoring relevant integrated quantities and checking for
mass balances.

C. Case validation

Laminar flow in rough microchannels with large width/
span ratios (#1, 19.2; #2, 38.2; #3, 38.9) suggested by Pfund
et al. [9] is simulated in this investigation, which to give a
verification of the present model. Table I presents the param-
eters for the flow in these polyimide microchannels. In par-
ticular, the calculated Po is compared with that measured
experimentally [9]. As shown in the table, the calculated Po
in the present paper agrees with the experimental value
within the uncertainty. This good agreement between the nu-
merical results and the experimental data verifies the present
model is reasonable.

IV. ROLE OF ROUGHNESS ON LAMINAR FLOW

The presence of roughness leads to a change of velocity
profile for laminar flow in microchannel, which plays con-
siderable role on the pressure drop along the channel. Figure
7 compares the water flow pressure drop along the smooth
and rough microchannel. As shown in the figure, the pressure

038
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—— D18, Rough 0.53
1o D=1.5, Rough < 8
™ D12 Roush o, & S 0380
= o4 - Smooth 2052 §
o 5 = 0375
g B s
s ~ & i
T 029 051 0370
0.037 0.038 0.037 0,038
0.04 y/m y/m
000 001 002 003 004 005 aa bb

y/m

FIG. 7. (Color online) Pressure drop in channels (W=1 mm,
H=100 pm, L=0.05 m, e=1%, Re=1500).

drop in the rough channel is larger than that in the smooth
channel and a rough surface with a higher fractal dimension
results in a higher pressure drop. The fluctuation character-
istic of pressure drop due to the vortex generated at the
roughness can also be found in the figure.

In order to give a clearer understanding of the effect of
roughness on fluid flow, an example of two-dimensional lo-
cal near-wall streamlines, especially the visualization of the
vortex in the valley of roughness, is illustrated in Fig. 8, and
the effect of vortex formation on pressure drop for this local
section is given in Fig. 9. As shown in the figures, the peaks
and valleys of rough surface obviously perturb the local flow,
and swirl patterns are observed near the channel walls. In
addition, the pressure gradient at the location of vortex for-
mation (see D— in Figs. 8 and 9) is significantly larger
than that in no vortex region. This phenomenon implies that
the presence of rough elements results in a counterpressure
distribution near the surface and consequently leads to an
increase of friction factor for laminar flow.

Figure 10 compares the Poiseuille number as a function of
Re for different depth/width ratios in the channel. Differing
from the smooth microchannels, Poiseuille number of rough
microchannels is no longer constant with Re, but rather in-
creases linearly with Re and is larger than the classical value.

a-a

FIG. 8. Local streamlines in the near-wall region (H=100 um,
Re=1500, D=1.8, £=2%).
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FIG. 9. Effect of vortex formation on pressure drop.

This phenomenon implies that the vortex effects become
more and more important with the increasing Re in rough
microchannels. In other words, the vortex effects contributed
by the roughness at lower Re is much smaller than that at
larger Re, therefore, the Poiseuille number at lower Re is a
little higher than the classical value, but differing from the
classical value more and more with the increasing Re.

Figure 11 illustrates the effect of relative roughness, &, on
Po. As shown in the figure, at the same fractal dimension, the
Poiseuille number increases in a nearly linear fashion with .
In particular, for high values of relative roughness, the flow
over rough features induces recirculation and flow separa-
tion, which contributes to an increase in the single-phase
pressure drop.

In addition, as shown in Fig. 12, even for surfaces with
the same relative roughness, the value of Po is influenced by
the roughness irregularities, as indicated by the fractal di-
mension, D. Since roughness with larger self-affine fractal
dimensions yields more frequent variations on the surface
profile, this results in a significantly larger increment in pres-
sure losses.

Therefore, the Poiseuille number for laminar flow in mi-
crochannels of a specific cross-sectional shape with a rough
surface is a function of the Reynolds number, Re, the ratio of
the wall roughness height to the hydraulic diameter, &, and
the self-affine fractal dimension, D.

38+
—a—H/W=0R  —— H/W=0,S
354--e-- H/W=0.05R ------ H/W=0.05,S
] O HPOLR o H01S
e
S 29 e
/A/. U
264 ___—.'___ ’._D-"".’l
o -7
23T .
jg| 7T

300 600 900 1200 1500
Re

FIG. 10. Effect of Re on Po (R-rough, D=1.8, £=1%; S-smooth
classical).
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FIG. 11. Effect of & on Po (D=1.8, Re=1500).

V. CONCLUSIONS

A three-dimensional model of laminar fluid flow in micro-
channels with fractal rough surfaces is developed and ana-
lyzed numerically. The W-M function is introduced to char-
acterize the roughness. The effect of Reynolds number,
relative roughness, and the self-affine fractal dimension on
laminar flow are all investigated and discussed. In addition,
the accuracy of the calculated Poiseuille number as deter-
mined by the present model is verified using experimental
data available in the literature. The conclusions can be sum-
marized as follows:

(1) The rough surface can be characterized by the fractal
geometry, which utilizes the self-affine fractal dimension to
indicate the irregularity of a surface profile. For two profiles
with the same mean relative roughness, the fractal dimension
may be different.

(2) Differing from the classical theory, the Poiseuille
number of rough microchannels is no longer constant with
Re, but increases linearly with Re and is larger than the
classical value. The vortex effect contributed by the rough-
ness turns to be more and more important with the increasing
Re.

(3) With increasing relative roughness, the flow over

rough features induces more recirculation and flow

321

—— H/IW=0
3 e HIW=0.05
304 --o— H/W=0.1 .

$ 291 P y
28+ e
SPr o7

27 e e

o7 o
26+ T

—————— o
25+ ? ...... T T T T
1.20 1.35 1.50 1.65 1.80
D

FIG. 12. Effect of D on Po (e=1%, Re=1500).
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separation, which contributes to an increasing single-phase
pressure drop.

(4) Surfaces with larger self-affine fractal dimensions,
yield more frequent variations in the surface profile and also
result in a significantly larger increment in pressure losses.
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